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We study the time-dependent solutions of a nonlinear cascade model for homo- 
geneous isotropic turbulence first introduced by Novikov & Desnyansky. The 
dynamical variables of the model are the turbulent kinetic energies in discrete wave- 
number shells of thickness one octave. The model equations contain a parameter C 
whose size governs the amount of energy cascaded to  small wavenumbers relative to 
the amount cascaded to large wavenumbers. We show that the equations permit 
scale-similar evolution of the energy spectrum. For 0 < C 6 1 and no external force, 
the freely evolving energy spectrum displays the Kolmogorov k-+ power law, and the 
total energy decreases in time as a power tkW,  where the exponent w depends on the 
value of C. Grid-turbulence experiments seem to favour a value of C in the range 
0.3-0-6. I n  the presence of an external stirring force acting near a wavenumber k,, 
the model predicts, in addition to  the Kolmogorov k-8 spectrum for k > k,, a scale- 
similar flow of energy to wavenumbers k < k,. This backward energy flow falls off 
as a power law in time, and establishes a stationary energy spectrum for k < k, which 
is a power law in k less steep than k-g. We discuss the similarity of the behaviour of 
the model for C > 1 to the behaviour of turbulent fluid for a spatial dimensionality 
near 2. The model is shown to approach the Kovasznay and the Leith diffusion 
approximation equations in the limit in which the thickness of the wavenumber 
shells approaches zero. However, the cascade model with finite shell thicknesses 
appears to behave in a more physically reasonable way than the limiting differential 
equations. 

1. Introduction 
Because of the difficulty of dealing directly with the Navier-Stokes equations, 

numerous models have been proposed in an effort to capture some of the essential 
statistical features of turbulent fluid motion. Most concentrate on the evolution 
in time of the energy spectrum E ( k ,  t )  of homogeneous isotropic turbulence. One 
particularly simple class of such models was introduced hy Oboukhov (1971) and 
Desnyansky & Novikov (1974~) .  I n  these models a discrete set of variables u,(t), 
labelled by integers n, represents the energy spectrum. They are defined such that 

+ U i ( t )  = E ( k ,  t )  dk 
Z-tk,, 

t Present address : National Center for Atmospheric Research, Boulder, Colorado 80303. 
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is the energy contained in a shell in wavenumber space centred around k = 0 with 
inner radius 2-*k, and outer radius 2!ik,, and with the wavenumbers k ,  logarithmically 
spaced: 

k ,  = 2,k,. (1 4 
Desnyansky & Novikov proposed nonlinear equations of motion for these variables 

subject to the constraints that  the equations (i) have only quadratic nonlinear terms, 
(ii) introduce no intrinsic length scales via the coupling coefficients, (iii) couple nearest- 
neighbour shells only (thereby incorporating the original Kolmogorov (1 941 ) picture 
of an energy cascade) and (iv) conserve the total energy of the system 

in the absence of viscous dissipation or an external force. The most general set of 
equations satisfying these conditions is 

dU,/dt = “k,[&, - 2 ~ ,  u,+~ - 2 % ’ ( ~ , - ,  U ,  - 2 ~ : + 1 ) ]  - vk: U ,  + Fn(t). (1.4) 

The parameters CI. and C are not fixed by the constraints. The last two terms in the 
equations represent the effects of viscosity and an externally imposed driving force. 

Considering its simplicity, the model behaves in a remarkably sensible way. 
Desnyansky & Novikov (1974a, b )  studied the equations with C = 0 and showed that 
behaviour corresponding to the Kolmogorov spectrum 

E ( k ,  t )  N k-e ( 1 . 5 )  

appears 110th for the forced equations and with no force and appropriate initial 
conditions. Bell & Nelkin (1977) have shown that with an external force acting a t  
wavenumbers near k,, for any value of C, the equations generate a steady-state 
spectrum corresponding to Kolmogorov’s full scaling form 

E(k)cc  egk-eF(k/Xd)  ( k  > k,), (1.6) 

with Kd = ~ f v - 2 ,  (1.7) 

where E is the rate of energy dissipation by viscosity. 
However, an unexpected qua’:tative change in the character of the scaling form 

occurs a t  the value C = 1.  For C < 1 ,  the ‘universal function ’ F ( z )  in (1 .6)  has a finite 
limit for z+ 0, so a pure k-8 power-law spectrum persists in the zero-viscosity limit. 
But for C > 1, the function F(z)  behaves as 

F(z)  - 2-5 ( z + O )  (1.8) 

with 6 = 2 In C/ln 2 or C = 265, (1.9) 

so that the spectral behaviour is 

E ( k )  N k-4-c (C > 1) (1.10) 

in the zero-viscosity limit. Moreover, the energy dissipation E vanishes in the limit 
v+  0 for C > 1.  The energy introduced into the system by the external force is not 
dissipated but, as we shall show later, flows to smaller and smaller wavenumbers 

This reversal in the direction of the flow of energy is not unfamiliar. It has been 
( k  < ko). 
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argued that such a reversal occurs in two-dimensional turbulence (Kraichnan 1967). 
Behaviour strikingly similar to what we find has been seen by Frisch, Lesieur & Sulem 
(1976) in a closure-model calculation which permits continuous variation of the spatial 
dimensionality from d = 3 to d = 2. As d decreases, an abrupt change in the direction 
of energy flow occurs, at d = d, z 2-05, with an accompanying steepening of the 
energy spectrum power law as in ( l . l O ) ,  until a k-3 spectrum is reached at d = 2. 
However, Fournier & Frisch (1 978) have examined the continuous-d closure model 
in more detail and found that the situation near d = d, is more complicated than a 
naive one-to-one relation between our model parameter C and the spatial dimension 
would suggest. I n  particular, the closure model, in addition to the Kolmogorov 
spectrum k-* and the equipartition spectrum kd-1, allows two stationary power-law- 
type energy spectra for d < di NN 2.06 and none for d > d:, whereas our model allows 
an anomalous stationary power-law spectrum for both C < 1 and C > 1 .  

Generalizations of the cascade-model equations are, of course, easily imagined if 
one broadens the range of interactions one is willing to allow. Gledzer (1973), for 
example, has written equations which include couplings to second-nearest-neighbour 
wavenumber shells (e.g. terms of the type u, = constant x u , + ~  u , + ~  + . . .), which, with 
a suitable choice of coefficients, permits conservation of both energy and enstrophy 
in the inviscid limit. One may likewise relax the requirement of quadratic interaction 
terms, or increase the number of modes per shell. Fournier & Frisch (1978) have 
suggested that some such modification might yield a model with a structure more 
like that of their closure model near d = 2, which could be useful in clarifying the 
stability of the various stationary spectra near d = d,, since direct numerical in- 
vestigation of the closure model is rather difficult in this region. 

We shall nevertheless confine ourselves to  the model equations (1.4). These have 
the advantage of depending in an important way only on the single parameter C (a 
may be absorbed as a scale factor by the u,) and yet of reproducing a t  least quali- 
tatively many of the features of spectral evolution found in the far more complicated 
closure models of turbulence. 

We shall concentrate here on time-dependent solutions of the cascade model. I n  
particular, the possibility of scale-similar evolution in time, described by 

E ( k ,  t )  = constant x t-2ak-8-SF[kL(t)], (1 .11 )  

L(t) = Lo(t/to)”, y = ( 1  -a) / ($  - $s), (1.12), (1.13) 

follows naturally from the model equations, as we shall show further on. The region 
of validity of the scaling form (1.11) depends on whether or not there is an external 
force, on how large the viscosity is, and on how long the system has been evolving. 
It is also necessary to distinguish the cases C < i and C > 1 .  It will be convenient 
to summarize below what we have learned about the scaling behaviour of the model, 
expressed in terms of the energy spectrum E(k,  t ) ,  since the results are distributed 
over the next six sections and given there in terms of the less familiar model variables 
u,(t). 

(i) C < 1 and all Sn = 0 (no external force). The energy spectrum behaves as 

E ( k ,  t )  - [e(t)])k-*F‘[kL(t)] (1.14) 

(1.15) 
13-2 
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with (1.16) 

(1.17) 

E ( t )  - t-3a (1.18) 

and F1(O) = 0, F,(co) = 1.  (1.19) 

The constants Lo and to depend on the initial conditions, as does the origin of the time 
variable. The function FI(z) and the exponents a and y depend on the choice of the 
parameter C in the model equations (1.14). The scaling form (1.14) is in general valid 
only for values of k where the effects of viscosity can be ignored ( I c  < Kd) .  However, 
for one particular value of C (C N 0-6), the exponents take the values 

a=g, y = l  23 (1.20) 

and the scaling law applies to  the entire spectrum. 
It has long been suggested that the decay of three-dimensional homogeneous 

isotropic turbulence proceeds in a self-similar way. The two-volume survey by Monin 
& Yaglom ( 1  975) contains a thorough discussion of this hypothesis. Experimental 
evidence from wind-tunnel experimenh is inconclusive, since it is not clear whether 
turbulent energy in the largest scales (smallest wavenumbers) is nearly enough iso- 
tropic and undistorted by the finite size of the wind tunnel to permit an adequate 
test of the idea. The power-law decay of the energy predicted by (1.14), 

E(t )  - t -W,  w = 3a- 1 ,  (1.21), (1.22) 

is clearly observed, but the value of w seems to depend on the method of generating 
the turbulence. For instance, values of w ranging from 1.0 to 1.3 have been found by 
Gad-el-Hak & Corrsin (1 974). The longitudinal integral scale 

(1.23) 

which characterizes the scales where most of the energy resides and which is predicted 
to  grow as t g  by (1.15), is seen to increase in the wind-tunnel experiments, but not 
always according to a simple power law. 

The model equations of Heisenberg (1 948) and Kovasznay (1  948) and the diffusion 
approximation of Leith (1967) for the evolution of the energy spectrum all permit 
scaling behaviour as in (1.14). Lesieur & Schertzer (1977) have shown numerically 
that a Markovian closure model exhibits this scaling behaviour. With initial conditions 
similar to  those studied here they saw an exponent w = 1-33. But they, like Leith, 
pointed out that  the value of the exponent w depends on the small k behaviour of the 
initial energy spectrum. 

(ii) 1 < C < 23 and all Fn = 0 (no external forcing). No energy is dissipated in the 
limit of zero viscosity. The energy spectrum behaves (for v+ 0) as 

E ( k ,  t )  N t"-"-s-W,,[kL(t)], 

L(t) = Lot/to 
where 6 is given by (1.9), 

(1.24) 

(1.25) 

and FI1(O) = 0, FII(03) = 1.  (1.26) 
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Equation (1.24) implies the homogeneity relation 

E(h-'k, At )  = AE(k, t ) .  (1.27) 

It is tempting to set 6 = $ in order to try to describe two-dimensional turbulence 
(in spite of the fact that (1.4) does not conserve mean-squared vorticity!). Indeed, 
such a scaling law as (1.24) for freely evolving two-dimensional turbulence has been 
proposed by Batchelor ( 1  969)) and there is qualitative agreement between the relation 
(1.27) and the graphical results of a calculation based on the eddy-damped quasi- 
normal Markovian approximation given by Pouquet et aZ. (1975). But the equation 
for F',(z) which we shall describe later may cease to allow simple power-law scaling 
relations a t  precisely the value of C for which g = $. 

(iii) C > 1 and So # 0 (forcing in a region of wavenumbers around ko).  The energy 
spectrum for k > ko has the form 

E ( k , t )  - k-t-s 

in the absence of viscosity and there is no transfer of energy to large wavenumbers. 
With viscosity, the spectrum may be written as in (1.6) and (1.8). For k < k,, the 
spectrum behaves as 

E(k,  t )  k-+F,,,[kL(t)l, (1.28) 

with L ( t )  = ho(t/t,)t (1.29) 

and %(O)  = 0, 4 , d ~ )  = 1 ,  (1.30) 

and (for u = 0) all the energy introduced by the force flows to small k.  There is nothing 
to prevent us from choosing C = 2f, so that g = $. The spectrum then looks very much 
like that described by Kraichnan (1  967), with a k-3 behaviour for large k and gener- 
ation of a k-8 spectrum as the energy flows to smaller and smaller k .  There are no 
logarithmic corrections to the k-3 power law, as suggested by Kraichnan (1971 b )  for 
two-dimensional turbulence, since the model does not include the effects of non-local 
transfer of energy. 

(iv) C < 1 and F, # 0 (forcing near wavenumber ko).  The energy spectrum for 
k > k,, is just the stationary one described in (1.6). But for k < k,, a new power law 
appears, described by 

E(k,  t )  N k:-+++'QF'v[kL(t)], (1.31) 

L ( t )  = Lo(t/t,)", Y = (+++lcl)-17 (1.32), (1.33) 

F , V ( O )  = 0, 4 v ( m )  = 1 ,  (1.34) 

< 0 is fixed by (1.9). The rate eback a t  which energy flows 'backwards' to small 

€'back €input - €diss, (1.35) 

where einput is the rate at which energy is introduced by the external force and edi88 is 
the rate of energy dissipation by viscosity, decreases as time goes on : 

where 
k ,  defined as 

(1.36), (1.37) 

Note that the rate of energy flow to large k remains essentially constant and equal 
to Ginput. 

Energy is transferred to large k along the k-4 portion of the spectrum. The second 



374 T. L. Bell and M .  Nelkin 

power law is not accompanied by any energy transfer. One might try to identify it 
with the equipartition spectrum E ( k )  @-I, where d is the dimension of space. This 
is discussed in 3 8. 

(v) Following a suggestion of Uriel Frisch’s (private communication), we have 
looked for solutions to the inviscid model equations describing the ‘catastrophe ’ which 
is believed to occur in a finite time t, (Brissaud et al. 1973). We find that the model 
equations permit a solution of the form (expressed in terms of the energy spectrum) 

with 
E(k ,  t )  - k-~-sFv[k/Kc(t, - t ) ] ,  (1.38) 

KJAt) - (At)-*, q = ($-Is)-’ 2 r  (1.39), (1.40) 

FV(O) = 1, F,(Oo) = 0, (1.41) 

where F,(z) decreases exponentially fast in the limit z+00. Note that the results in 
the previous four cases were all for t 9 t,. 

The form (1.38) implies that the enstrophy 

SZ = som k2E(k, t ) d k  (1.42) 

diverges in a time t ,  as 
Q(t) N (t, - t ) - 2 .  (1.43) 

It is likely that as s -+ 9, t, -+ 00. 

We have outlined above how the model behaves in various interesting cases. It 
has the advantage, over models which treat the energy spectrum in a more sophis- 
ticated way, that analytic insight into its properties is relatively easy to obtain. 
Moreover, it is far easier to perform numerical calculations with the cascade model, 
which comes with a ready-made logarithmic discretization of the k axis, than with 
models which retain a continuous wavenumber. 

I ts  most obvious defect is its complete neglect of non-local energy transfer. But 
curiously enough, the fact that it couples shells in wavenumber space of finite 
thickness, rather than the infinitesimally thin shells which occur in the completely 
local differential equation for the energy spectrum of Kovasznay (1948) and the 
diffusion approximation of Leith ( 1  967), seems to make it behave more realistically 
in the dissipation region: the energy spectrum falls off exponentially for large k 
according to the cascade model (Bell & Nelkin 1977), but drops to zero identically 
beyond a certain multiple of the dissipation wavenumber K,, according to the 
differential equations. This difference is especially remarkable, since in the limit of 
zero shell thickness the cascade-model equations approach the Kovasznay equation 
and the Leith equation, depending on the choice of C, as we show in the appendix. 

I n  $ 3  2-7, the equations describing the scaling behaviour of the model are derived 
for each of the cases discussed above. Examples from direct numerical integration 
of the model equations (1.4) are given to illustrate the conclusions reached on the basis 
of the scaling equations. The results are discussed in Q 8. 
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2. Scaling behaviour of the cascade model 
The dynamical equations of the cascade model have been written down in (1.4). 

In  order to establish the possibility of scale-similar evolution of the model in time, it 
is convenient to introduce a new set of variables which incorporate some of the 
expected power laws: 

u,(t) = A(t/to)-ak,+ (k,/k,)-3sg,(t). (2.1) 

The hope is that by factoring out power laws in k and t as in (2.1)) we may choose as 
boundary conditions for the g,(t) 

lim g,(t) = 1 
t - tm 

( 2 . 2 ~ )  

We shall also assume gn(0) = 0 (2.2b) 

for all n except n = 0,  i.e. energy will be assumed to be present initially in the n = 0 
shell (u,(O) f 0) .  

Substitution of (2.1) into (1.4) yields the following equation for g , ( t ) :  

(2~aA)-1k,~(k,/k,)3s(t/to)a p2 - - 4 - gn] = zsgt-1- 2-tsgn gn+l 

- C ( 2 ~ s g , - l g n  - 2-sg:+1) - v(Z*aA)-l ( t / t ,p  k~(k,/k0)bsg,. (2.3) 

Since we shall consider only values of n far from n = 0 when tilere is an external 
force, the forcing term has been omitted in (2.3). 

Next the explicit dependence of the left-hand side of (2.3) on k ,  is removed by 
introducing a new time variable 

7 = Qkntu, (2.4) 

with Q = ( 2 8 a A k b  t : ) l / (#- ts) ,  (2.5) 

Y = ( 1 - 4 / ( ~ - 4 s ) )  

yn(7) gn(t)* 
and new functions 

Equation (2.3) becomes 

7-(*-4s)[y7dy,(7)/d7 - a y , ( ~ ) ]  = 2sy:-1(&~)  - 2-tsy,(7) Y , + ~ ( ~ T )  

- c [2*syn-1 (~~)  y , ( ~ )  - 2-syt+1(2~)] - vQ- lhk t - l ’ v~~’vy~(7 ) .  (2.8) 

In the region where the viscosity term may be neglected, t,here is nothing in the 
equations to distinguish t,he behaviour of one y , ( ~ )  from another yn.(7). We therefore 
seek solutions to the equations for a single function y(7) independent of n: 

~ n ( 7 )  = ~ ( 7 ) ,  (2.9) 

(2.10) 
~ - ’ * - t s ) [ Y ~ d y ( ~ ) / d ~  - u ~ ( T ) ]  = 2”Y2(47) - 2-tSy(7) ~ ( 2 7 )  - C[2tSy(+)  ~ ( 7 )  - 2-s72(2~)], 

with the boundary conditions, suggested by (2.2),  

y(0) = 0) y(c0) = 1. (2.11) 

The boundary conditions for the g,(t) a t  t = 0 would in fact serve to distinguish the 
y,(7) from each other at t = 0, but one hopes that as t increases the g,(t) will approach 
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values governed by the single function ~ ( 7 ) .  This can be verified only by stability 
analysis of the equations or by direct numerical integration. We shall provide evidence 
of the latter sort. 

If solutions of (2.10) and (2.11) can be found, then the above steps imply for the 
original variables un(t) the possibility of scale-similar behaviour in time: 

un(t) - t-ak,Q-3sy(7). (2.12) 

This, combined with the rough equivalence - k, E(kn), which follows from the 
definition (1. l), leads directly to the scale-similar behaviour of the energy spectrum 
given in (1.11). A more formal demonstration of (1.11) may be constructed using the 
exact definition (1.1 ). 

It is easy to see that (2.10) can have solutions satisfying the boundary conditions 
(2.11) for only two values of s: 

s = O  or s = < = 2 l n C / l n 2 .  (2.13) 

A normalization condition for y(7 )  closely related to the energy-conserving pro- 
perty of the original equations (1.4) followsfrom (2.10) and (2.11). Let 

7 ,  = 2nT0 (2.14) 

in (2.10), multiply by 7;3y(7) and sum over n up to n = N .  The left-hand side then 
becomes 

N 

C 7 n z Y ( 7 n )  =z 7 ~ Z [ ~ Y 7 ~ d r ~ ( 7 ~ ) / d 7 ~ - a r ~ ( 7 ~ ) I ,  ('.15) 
n= - m  

where we have defined 
2 = g+s  

and 

(2.16) 

(2.17) 

After the same operation on the right-hand side of (2.10), we obtain 

7p[frY70 m N ( 7 0 ) / d 7 0  - arN(70)1 = 7$s[2-scy(27N) - 2-*8y(7N)1y(7N) y p N ) .  (2.18) 

In nearly all cases we may safely take the limit N 3 00 and use the boundary condition 
y(c0) = 1 to simplify considerably the right-hand side of (2.18). The nature of the 
solutions to (2.10) and (2.18), and their implications for the behaviour of the model, 
are most conveniently treated separately for each of the situations discussed in the 
introduction. 

3. Scaling behaviour for 0 < C < 1 and no forcing 
Freely evolving three-dimensional homogeneous isotropic turbulence appears to be 

described by this case. The scale-similar evolution of the variables u,(t) is given by 
(2.1) with s = 0:  

u,(t) = A(t/ t0)-~k,*y(7) ,  (3.1) 

where 7 = (At$)Bk,tV, y = Q(l - a )  (3.2L (3.3) 
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7-*r~7dr(7f/d7 - a m  = ~ ~ ( 4 7 )  - ~ ( 7 )  ~ ( 2 7 1 -  ~[7(47) ~ ( 7 )  - y2(27)1 
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and y(7)  satisfies the equation 

(3.4) 

with the boundary conditions (2.11). In  writing these equations, we have set 

(3.5) a = 2-3 

in order to simplify their appearance without loss of generality. It is evident from 
equation (1.4) for un(t)  that resuIts for different values of a are related to each other 
by simple scale changes of the un(t) .  This choice (3.5) of a will be used henceforward. 

Equation (2.18) for I'w(70) is easily solved in the present case, and yields the 
normalization condition 

W 

2 2-8"y2(2"7,) = 2(1 - c ) ( 3 ~ ~ - 1 ) - ' 7 ~ .  (3.6) 

From this fact and the scaling form (3.1) it  follows that the energy of the system, 
defined in (1.3), decays as an inverse power of time, 

E( t )  = (Ato")3 (1 - C )  (3a- l)--lt-3a+l, (3.7) 

n = - w  

as does the rate of energy dissipation, 

s ( t )  = v En k: uE(t) 

= ( 4 3 3  (1 - C) t-3=. 

Solutions to (3.4) consistent with the boundary conditions may be obtained in the 
limits of very small and very large 7. We find that, for 7 < 1, 

y(7)  w ( 2 Y y q / C )  7-9e-g/7, 

and for 7 1, 
y(7)  w 1 - 0 7 - 8 ,  

(3.10) 

(3.11) 

D = a[28 - 1 - 2-8 - C ( Z ~  + 1 - 24)l-l. (3.12) 

However, the unknown exponent a (and y) and t,he parameter q which appears in 
(3.10) depend on the value of C in a way which we have not been able to obtain 
analytically, and must be determined as a kind of eigenvalue by solving (3.4) subject 
to the boundary conditions. This has proved to be rather difficult, and we have 
instead resorted to integrating the original equations (1.4) forward in time numerically 
for various values of C and extracting the exponent a from the observed power-law 
decay of the energy. 

The case C = 0 is an exception. For this value of C ,  we may set y = 0, and the 
derivative term in (3.4) drops out of the equation. It is then a simple matter to solve 
the equation numerically. One finds that the scaling function y(7)  vanishes at  all 
but a discrete set of points 7, = 2nr0 (n = 0,1 ,2 ,  .. .), with 

70 M 1.696, y(7) M 0.512. (3.13) 

The values of y(7,) are generated from the recursion relation obtained from (3.4), 

(3.14) 
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-4 -2 0 2 4 6 8 10 12 
n 

FIQURE 1.  Results of numerical integration of the model equations for C = 0.6, v = (a = 2-3, 
k0 = 1) .  All the energy was located initially in shell n = 0, with uo(t = 0) = 1.3. The solid lines are 
drawn to guide the eye; the variables u,,(t) are: of course, defined only for integral n. The dotted 
curve was generated from the curve t = 45 using the scaling relation (3.16) with a = 0.70. 

using as initial values y ( 1 / 2 ~ ~ )  = 0 and those in (3.13). No other value of 7, or ~ ( 7 , )  

will generate a sequence of numbers satisfying the boundary conditions (2.11). These 
results are found to  be in excellent agreement with the behaviour of the model for 
C = 0, after a few multiples of the ‘eddy-turnover time’ (u, k,)-l have elapsed. 

An exa.mple of the behaviour of the model for C = 0.6 is shown in figure 1. At 
t = 0 all of the energy was located in the n = 0 shell, with uo(t = 0) = 1-3. The inte- 
gration of the equations was carried out using a = 2-3 and k, = 1. The quantity 

h,(t) = k i  u,(t) (3.15) 

has been plotted us. n in order to  display better the appearance of the Kolmogorov 
spectrum, which corresponds in our model to  u,(t) - k;+. It can be seen that h,(t) 
is level in the region where viscosity is unimportant. 

Nearly superimposed on the curve for t = 9.7 in figure 1 is a dotted curve generated 
from the curve for t = 45 by the scaling law which follows from (3.1)-(3.3): 

hn+,(2-P&) = 2aP/vhn(t). (3.16) 

The dotted line was obtained using p = 1 and a = 0-70. The choice for a was extracted 
from the observed power-law decay of e( t )  using (3.8). The graphs of e ( t )  for two values 
of C in figure 2 show clearly the appearance of the power-law decay. 

The scaling behaviour in time of the energy spectrum is evidently established in a 
reasonably satisfactory way after a few eddy-turnover times (u, k,)-l,  except in the 
region where the viscosity term becomes important, where scaling is not expected. 
The reason that scaling seems to be approximately satisfied even in the dissipation 
region for the case plotted in figure 1 may be found by returning to (2.8). There it may 
be seen that for one particular choice of the exponents a and y, mentioned in the 
introduction in (1.20), the viscosity term ceases to  depend on the wavenumber k,. As 
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D 
t 

FIGURE 2. Energy dissipation rate ~ ( t )  calculated from (3.8). The solid curve is for the run with 
C = 0.6 described in figure 1 .  The dashed curve is for C = 0.4 with the values of all other para- 
meters identical to those used for the run with C = 0.6. 

C 

0 
0.2 
0.4 
0.6 
0.8 
1 

W 

2 
1.52 
1.34 
1.10 
0.66 
0 

Y 
0 
0.26 
0.33 
0.44 
0.67 
1 

TABLE 1. Numerical results for the exponents w, assuming E(t )  - t-W, and y = # (1 -u), assuming 
~ ( t )  N t-3a. The viscosity term in (1.4) was replaced by an eddy viscosity for these runs, by 
truncating the equations a t  n = 5 and setting u,(t) = 2-+u5(t). The accuracy of the exponents is 
estimated to be 5 yo. The formula C = 2"(l-''Y) provides an approximate fit to the data, but has 
no theoretical justification. 

a consequence, assumption (2.9) becomes possible even in the region where viscosit~y 
is important, and (2.10) may be solved with the addition of a term proportional to 
the viscosity. 

Scaling as described by (3.16), valid throughout the spectrum, is thus possible for 
the value of C = C, (C, N 0-6) for which the exponents a and y are f and 4, respectively. 
The case plotted in figure 1 is very nearly an example of this. 

We give in table 1 results for the exponents w and y as a function of the parameter 
C. The case C = 0 has already been investigated by Desnyansky & Novikov (1974b), 
who found w = 2. The case C = 1 is a special limit where the pure Kolmogorov spectrum 
transfers no energy, to which we can assign w = 0 [see (3.7) and (3.9)]. The other 
entries in the table are extracted from numerical calculations of the sort described 
above. 
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The dimensionless ratio Kd(t)/L-'(t), where K ,  is defined in (1 .7 )  and L(t) in (1.12), 
decreases with time for C < C,, so the region where scale similarity is a useful charac- 
terization shrinks with time. For C > C,, on the other hand, the ratio increases, 
and so, relative to  the scale defined by the dissipation wavenumber Kd,  scale similarity 
applies to an increasingly large portion of the spectrum. 

4. Scaling behaviour for 1 G C < 23 and no forcing 
As was mentioned in the introduction, the behaviour of the cascade model for 

C > 1 is similar to  what is observed by Frisch et al. (1976) for a spatial dimensionality 
close to 2, in that energy ceases to  be dissipated in the zero-viscosity limit and the 
energy spectrum follows a steeper power law for large k.  Unfortunately, as we shall 
see, the scaling behaviour of the model equations is not of the simple power-law type 
at precisely the value of C (C = 28) which might have described two-dimensional 
turbulence. 

The scaling behaviour for C >, 1 and no forcing is obtained by setting s in (2.1) 
to  the value s = < given in ( 1.9) : 

u,(t) = A(t/to)-"k,) (kn/ko)-$cY(7). (4.1) 

The normalization condition given in (2.17) and (2.18) is easy to  obtain for this case, 
since the right-hand side of (2.18) vanishes in the limit N+m.  The solution of the 
resulting equation is 

where y is given in (2.6) and r is an unknown constant. Since r,(7,,) satisfies, by 
definition, the identity 

rW(zT0) = Z%+WJ~~),  

it is necessary that 2a/y = Q + 6, 

or, from (2.6), y =  1, a = + + * < .  (4.3) 

The scaling variable 7 is therefore [see (2.4)] 

with 

and the total energy of the system is 

E(t)  = Qr[(Atg)2 k$]l/(f-@, (4.6) 

which is a constant independent of time, as would be expected for a spectrum 
E(k)  N k-4-5, since such a spectrum with < $. 0 does not transfer energy to large 
wavenumbers in the limit of zero viscosity, as mentioned in the introduction and 
discussed in detail in Bell & Nelkin (1977). I n  effect, the exponents given in (4.3) 
follow from the scaling assumption (4.1) and energy conservation. 

The equation for the scaling function y ( 7 )  appearing in (4.1) is obtained from (2.10): 

7-(3-f5)[7dy(7)/d7 - c G ~ ( T ) ]  = C2[y2(47) -7(&7) Y ( T ) ]  - c-'[y(7)y(27) -r2(27)] (4.7) 
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FIGURE 3. The emergence of the scale-similar behaviour predicted in (4. l ) ,  for C = 1.5. 

u = 2.6 x lo-' (a = 1.66, k, = 1) 

and no forcing. Energy is present initially in shell n = 0 with uo(t = 0) = 1.3. The quantity 
K,, = ( k , t ) + + J h , ( t ) ,  which is plotted 215.7 = k , t ,  should approach a single curve proportional to 
Y ( T )  in (4.1) for each n if the energy spectrum develops in a self-similar way. The exponent 
5 N 1.17 is given by (1.9). The behaviour of the mode1 is plotted for 5 < t < 30 only. 

with the boundary conditions ( 2 . 1 1 ) .  Asymptotic solutions to (4.7) are 

Note the persistence of the deviation of y(7) from a constant for C near 23 indicated 
by (4.9). 

I n  0 3 we verified the scaling behaviour of the system for C = 0.6 by simply observing 
that the spectrum a t  one time was related to the spectrum a t  a later time by appro- 
priate scale changes. An example of another method is shown in figure 3. The model 
equations for C = 1.5 were integrated forward in time up to t = 30, starting with all 
energy initially in shell 0 (u,(t = 0 )  = 1.3).  The form given for u,(t) in (4.1) suggests 
that  if 

h,(t) = P k i + % L , ( t )  

is plotted us. T = k, , t ,  a single curve proportional to  y ( 7 )  should emerge. This seems 
to  be the case in figure 3: the points for any given value of n appear to  converge to a 
unique curve with increasing time. Points corresponding to  t < 5 have been omitted, 
since about this much time was required for the system to reach a quasi-steady state. 
Values of n where viscosity was important are also omitted. It is worth remarking 
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that  energy was very nearly conserved in spite of the presence of viscosity, whereas 
for C < 1 energy is dissipated a t  a finite rate no matter how small the viscosity. 

The very slow approach of &,(?) to a constant for large 7 is explained by the asymp- 
totic behaviour of y ( 7 )  given in (4.9). For C = 1-5, one expects y ( 7 )  N 1 - 9 . 7 ~ - ~ ' ~ ~ ~ .  

5. Scaling behaviour for C > 1 and forcing 
An external force acting on wavenumbers k 2: k,, represented by 9, 4 0 in the 

model equation (1.4), is assumed to  act on the system for a long time. The small scales 
reach equilibrium with the force in a time of the order of the eddy-turnover time for 
scales - i/k,. The spectrum generated for k > k, is just the steady-state spectrum 

un(t) = €kiss I C n ' ( k n / r C , ) - ' ~ ~ ( k n / ~ ~ )  (5.1) 

discussed extensively in Bell & Nelkin (1977), where E~~~~ is the rate of energy dis- 
sipation by viscosity. The essential feature of this spectrum is that, in the limit of 
zero viscosity, the energy spectrum has the pure power-law behaviour 

E ( k )  - k-8-5 ( k  2 k,) (5 .2)  

and no energy is transferred to  large wavenumbers. 
The energy introduced into the system by the external force flows to small wave- 

numbers, and the spectrum which results for k < k, is obtained from (2.1) by setting 
a = Oands = 0: 

u,(t) = Ak,4y(7) (5 .3)  

7 = A%k,t%. (5.4) 

(corresponding to  a k-4 energy spectrum) with 

The scaling function y(7)  satisfies the equation 

W ~ ( 7 ) / d 7  = ~ ~ ( $ 7 )  - ~ ( 7 )  ~ ( 2 7 )  - C[Y(W ~ ( 7 )  - y2(27)1 (5 .5 )  

with the boundary conditions y(0) = 0 and y(c0) = 1 .  This equation has the asymp- 
totic solutions 

y(7)  x 3(2ZqC-1)7-+e-q/' for 7 < i (5.6) 

and y(7)  x 1-D7-" for 7 B 1 .  (5.7) 

2" = (2C- 1 ) / ( 2  - C), 

The exponent x is the solution of the equation 

(5 .8)  

and the constants q and D must be obtained from the solutions to  (5 .5) .  
According to  (5 .3)  and (5.4), the region containing an appreciable fraction of the 

energy extends down to a wavenumber (At)-% which decreases continually with time. 
The amplitude A in (5 .3)  may be related to  the rate of energy flow to small k by using 
the normalization condition in (2.18). Equation (2 .18)  in this case yields the condition 

W c 2-8ny2(27V0) = 2(C- 1 ) +  
n= -a 

(5.9) 
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t 
.Fo = 0.5 

n 
FIGURE 4. Behaviour of the model for C = 1.5 and an external force F,, = 0.5 chosen according 
to (5.12) to make u, = 1.  Parameter values were v = a = 2-3, k ,  = 1 and 5 2: 1-17 [from 
(1.9)]. Some energy was prosent initially: uo(t = 0) = 1.2. Note the emergence of two power laws 
u, - k-)-*c and k-& above and below the forcing point respectively. 

It follows that the energy of the system increases linearly with time, 

E(t) = (C- 1)A3t+constant, (5.10) 

and that the rate of flow of energy to small k is 

€back = (c- i )A3 .  (5.11) 

By considering the original equations of motion for the variables u,(t) with k, 2 k,, 
which are stationary in time, it is not difficult to show that the force 9, produces a 
stationary amplitude 

u, = Fkk; ) (C-  l ) -4  (5.12) 

and €back = Fi kc*(c- I)-*. (5.13) 

Note that there cannot be a stationary solution with a finite external force for C = 1.  
There is no problem with setting C = 2) when there is forcing (unlike the case 

without forcing, where the simple power-law scaling relations seem to break down). 
As remarked in the introduction, the spectrum for this value of C then looks very much 
like the spectrum for two-dimensional turbulence proposed by Kraichnan (1967), 
except that the logarithmic corrections expected in two-dimensional flows are absent 
here, since the model does not include non-local transfer of energy in its equations. 
It is likely, however, that in the absence of viscosity it would require an infinite 
amount of time to set up the k-3 spectrum up to infinitely large k by a step-by-step 
cascade of energy, since the turnover times (u, k,)-] are the same on all scales k,. 

A graph of the model behaviour for C = 1.5 is shown in figure 4, with an external 
force chosen using (5.12) to produce a unit amplitude for u,. The two power laws 
above and below k, are clearly visible. 
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6. Scaling behaviour for C < 1 and forcing 
We assume that the external force 9, acts on the wavenumber shell n = 0. Nearly 

all of the energy introduced into the system by the force cascades to large k and is 
dissipated by viscosity a t  the rate cdiSs. After a sufficiently long time, of the order of 
several eddy-turnover times (uoko)- l ,  a nearly stationary energy spectrum is set up 
for k 2 k,. It is described by the scaling form 

26, = &,k,af(k, /K,)  (n 2 0) (6 .1)  

that was discussed in Bell & Nelkin (1977).  This corresponds to  the usual Kolmogorov 
k-t energy spectrum cut off a t  the dissipation wavenumber K d  = eiis8 v-2. 

The behaviour for k < k, is unexpected. It is described by (2 .1 )  with a = 0 and 
s = <: 

u,(t) = AkLQ (kn/k0)-*c7(7)  (6 .2)  

with 7 = Qk,t*, Q = (Ak$C)* (6.31, (6 .4 )  

and Y = (Q-tC)-'. (6.5)  

A second power law, corresponding to an energy spectrum E ( k )  - k-8-c for k < k,, is 
generated by the external force ! Note that <, defined in (1 .9 ) ,  is negative here, since 
c = 24s < 1 .  

The scaling function y(7 )  satisfies (2 .10)  with a = 0: 

V * + W W / ~ ~  = ~ ~ [ 7 ~ ( t 7 )  - ~ ( 4 7 )  ~ 1 -  c - Y Y ( ~ ) Y ( ~ ~ )  - y2(27)1, (6 .6 )  

with the boundary conditions y(0)  = 0 and y(m) = 1. The asymptotic solutions to  
this equation are 

y ( 7 )  x (2+OgqC-l)7-%+*5e-~/7 for 7 < 1 (6 .7 )  

and y(7)  M 1 - D7B for 7 % 1 ,  ( 6 .8 )  

where the constants q and D must be determined from a complete solution to  (6 .6 )  
satisfying the boundary conditions. They depend on the value of C alone. 

Derivation of the normalization condition which is implied by (2 .18)  is a bit more 
complicated for the present case. The complication arises because the energy spectrum 
E ( k )  N k-9-C is less steep than the Kolmogorov spectrum, and for C < - Q the energy 
content of the spectrum between k = 0 and k = k, isfinite. Allowance must be made 
for this in studying the normalization condition. 

Substitution of the asymptotic behaviour of y(7)  given by (6 .8 )  into the right-hand 
side of (2 .18)  yields the equation 

tv7t-Z dI 'N(~ , ) /d7 ,  = C-1( 1 - C3) D (6 .9 )  

with 2 = ++< (6 .10)  
and YN(7 , )  defined by (2 .17):  

N 

n= -cc 
rN(70) = c 2-nZy2(2n7,). (6.11) 

For 2 > 0 (corresponding to  C > 2-4 N 0.794) we may take the limit N - t m  and solve 
( 6 . 9 )  to  find 

m 

2 2-nzy2(2"~0) = 2 ( ~ 2 C ) - l ( l -  c3) 07;. (6 .12)  
n = - m  
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FIQURE 5. Behaviour of the model for C = 2-3 and an external force .Fo = 0.37 chosen according 
to (6.17) to make uo = 1. Parameter values were v = a = 2-3, k, = 1 and [ = -$ [from 
(1.9)]. Some energy was present initially: uc(t = 0) = 1.65. Note the emergence of two power laws 
u, N k - f  and kj - f  above and below the forcing point respectively. 

But for 2 < 0 (C < 2-fj, the limit of rN does not exist, and it is necessary to replace 
y2(7)  by y2(7) - 1 in the above equations. One then finds, for C < 2-4, that 

00 

2-nZ[y2(2n~,) - 13 = 2(9CZ)-' (1 - C3) D7:. (6.13) 
n=-ca 

One must work with logarithms for 2 = 0. 

and (6.12). One finds 

The rate a t  which energy flows to small k therefore decreases as a power of t :  

The energy content of the system for k < k, may be obtained for 2 > 0 from (6.2) 

(6.14) E( t )  N (yZC)-l(1- C3)  DA2"kict"z. 

with 

(6.15) 

(6.16) 

For 2 < 0, one must use (6.13) instead of (6.12), but one again finds the decline in 
the accumulation of energy below k = k, to be described by the power law in (6.15) 
with the exponent (6.16). Equations (6.15) and (6.16) are valid for all C < 1 .  

Since the rate a t  which energy flows to small k goes to zero with the passage of time, 
we may solve the model equations for the amplitude u, produced by the force 9, 
for large times, assuming that all of the energy flows to large k,  and find 

and 

(6.17) 

(6.18) 

The results of numerically integrating the model equations for C = 2-3 2: 0.63 and 
9, = 0.37 [chosen to produce a unit amplitude u, according to (6.17)] are shown in 
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FIGURE 6. The rate which is defined in (6.19) and represents the rate a t  which energy is 
stcred by the system. Parameters as in figure 5 .  The power-law fall-off - t-1'6 ispredictedin (6.15) 
and (6.16).  The t - I  tmrsient is due to the initial conditions. 

figure 5 .  Both the power laws u, N k;) for k > k, and u, N k i  for k < k, appear. A 
graph of 

uO 6 - €diss (6.19) 

is shown in figure 6, and the power law predicted in (6.15) is clearly observed after 
the passage of a sufficient amount of time, with the exponent b = 1.5 predicted by 
(6.16). The transient t-1 behaviour from t = 15 to t = 30 arises from the decay of the 
energy present in the system initially. 

7. The catastrophe 
Brissaud et al. (1 973) have suggested that solutions to the Euler equations in three 

dimensions may develop singularities in a finite time (which depends on the initial 
conditions). The signal for the appearance of singularities is the divergence of the 
enstrophy [equation (1.42)]. The onset of the ' catastrophe ' may be described in terms 
of the behaviour of the energy spectrum. The energy is supposed to be localized 
initially around a wavenumber k,. The energy cascades to larger and larger wave- 
numbers and a power-law spectrum emerges, extending at time t from k, to a cut-off 
wavenumber K,(t). The catastrophe arises because this cut-off reaches infinity in a 
finite time t,. 

Uriel Frisch (private communication) has suggested a scale-similar form for the 
approach to the catastrophe which is easily adapted to the cascade model. It is only 
necessary to  set 

a = O  (7.1) 
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in (2.1), since the large scales will not react to the small quantities of energy trans- 
ferred to large k, and replace equation (2.4) for 7 by 

7 = &k,(t* -t)", (7.2) 

with Q = (A&)", y = ( Q  -+)-I .  (7.31, (7.4) 

un(ti = Ak,' (kn/k0)-'sy*(7)3 (7 .5 )  

The scaling form for u,(t) is thus 

where s depends on C. The scaling function y*(7) satisfies the equation 

-y74+tsdy*(7)/d7 = 2'7$(97)- 2-*'y,(~)Y,(27) - c[24sy*(&7)7,(7) - 2-sy$(2~)] 

(7.6) 

with boundary conditions (the reverse of the usual ones) 

Y*(O) = 1, y*(m) = 0. (7.7) 

y*(7) - 2*yqd+*se-q~, (7.8) 

The asymptotic solution to (7.6) for 7 $ 1 is 

where q is an unknown constant. 
Equations (7.2)-(7.5) for the scaling form of u , ( t )  imply the scale-similar approach 

to the catastrophe described in the introduction in (1.38)-( 1.41). The quadratic 
divergence of the enstrophy Q ( t )  predicted in (1.43) has been observed to describe 
well the behaviour of Q ( t )  for the cascade model with C = 0.2,  up to the point where 
viscosity terminates the divergence. 

The value oft ,  is determined by initial conditions and by the value of C. As dis- 
cussed in 5 5 ,  it is likely that t ,  becomes unbounded for G +  23, since in this limit the 
characteristic time of a step in the cascade no longer decreases with k,. 

8. Discussion 
We have studied the scaling behaviour of the cascade model for a variety of 

situations. I n  the absence of external forcing, and for C < 1 ,  the large wavenumber 
behaviour is of the familiar 1941 Kolmogorov type. The energy-containing range also 
behaves in a scale-similar way characterized by a power-law increase of the longi- 
tudinal integral scale with time and a power-law decay of the total energy. These 
power laws depend on the value of the parameter C, which determines the rate a t  which 
energy is transferred to small k relative to the transfer rate to large k. The observed 
decay of the total energy in grid turbulence suggests that  a value of C in the range 
0.3-0.6 is appropriate for freely decaying three-dimensional turbulence. The energy 
then decays as t-W with the exponent u' near 1.  

For forced turbulence we find stationary power-law solutions both above and below 
the forcing wavenumber. One of these solutions is of the k-% type and is associated with 
an energy cascade. When the parameter C is less than 1, this solution applies a t  large 
wavenumbers and describes the familiar energy cascade of three-dimensional tur- 
bulence. When C is greater than 1,  this solution applies a t  small wavenumbers and 
resembles the inverse cascade in two dimensions suggested by Kraichnan (1967). The 
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second power-law solution does not correspond to the cascade of any quantity con- 
served by the model equations. 

The power-law solutions are cut off a t  large k by viscosity in a familiar way. The 
cut-off a t  small k is determined by how long the fluid has been stirred. There is a certain 
correspondence between the effect of viscosity in terminating the power law for large 
k and the effect of the stirring time in terminating the power law a t  small k. For the 
k-9 solution and C < 1 ,  the viscous cut-off is of the familiar Kolmogorov type and 
leads to a finite rate of energy cascade in the limit of zero viscosity. For the k-s 
solution and C > 1 ,  the cut-off occurs a t  a wavenumber proportional to t-4, which 
allows the stored energy to grow linearly with time. I n  the limit of infinite stirring 
time the k-9 range extends to  zero wavenumber, and the energy cascade rate is finite. 

For the second power-law solution - k-8-5, the rate of energy flow is determined by 
the deviations from the pure power law. For C > 1 this solution applies a t  large k ,  is 
steeper than k-4, and has a rate of energy dissipation which goes to zero as the viscosity 
goes to zero. For C < 1 this solution applies a t  small k, is less steep than k-4, and has a 
rate of backward energy flow which goes to  zero as the stirring time goes to infinity. 
Again, the power-law dependence of the cut-off wavenumber and of the cascade rate 
on stirring time for small k is similar to the power-law dependence on viscosity for 
large k. 

The second power law for small k in forced three-dimensional turbulence is a new 
prediction of the model which merits further study. One small piece of evidence for a 
second power law appears in the work of Frisch et nl. (1976). I n  their graph for forced 
‘2.05-dimensional turbulence’, a second power law is shown for small k .  It has, in 
fact, just the equipartition spectral behaviour @-I, which is a stationary solution of the 
d-dimensional closure model (Fourner & Frisch 1978). 

If we were to choose the value C = 2-v E 0.28, which would generate with forcing 
an infrared k2 energy spectrum appropriate to three dimensions, we could refer to  
table 1 to see how the energy spectrum would behave for freely evolving turbulence 
with this choice for C. We should predict an energy decay rate proportional to t-1’39 in 
three dimensions, which is not unreasonable. But this manner of choosing C to yield 
the correct equipartition energy spectrum must clearly break down as the spatial 
dimensionality approaches d = 2. In  fact,, it is quite likely that if the psarameter C 
could be derived from the Navier-Stokes equation, using an averaging procedure of 
the sort to be discussed further on, its value would depend on whether or not the fluid 
was subject to external forcing; the value applicable in the one situation would not 
necessarily be correct in the other. 

The behaviour of the scaling function y(7),  which appears, for example, in (3.1), and 
whose square is related to the scaling function Fl in (1.14), requires some comment. 
The asymptotic behaviour of y(7) for small 7 given in (3.10) indicates that the energy 
spectrum approaches zero faster than any power of k for small k .  This results from 
the local couplings of the cascade model. I n  real fluids, the energy spectrum can 
develop a power law in k for k --f 0 owing to non-local transfer of energy. However, it 
is reasonable to hope that the behaviour of the energy spectrum in the region of k 
space where most of the energy is located is largely determined by local transfer, and 
evolves in the scale-similar way suggested by the cascade model. The power-law 
fall-off in the total energy of turbulent fluids seen both experimentally and in far 
more sophisticated treatments of the energy spectrum using the test-field model of 
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Kraichnan (1971 a)  (J. Herring, private communication; see also Newman 1977; 
Lesieur & Schertzer 1977) seems to support this. 

The case C < 0 has not been considered in this paper because the behaviour of the 
model in this regime does not seem to represent a sensible evolution of the energy 
spectrum. The initial-value problem does not settle down in a few eddy-turnover 
times t o  a quasi-steady power-law-type energy spectrum, and the variables u,(t) 
vanish from time to  time. 

Further understanding and extension of the cascade model depend on establishing 
its connexion with the basic Navier-Stokes equations. It is reasonable to consider an 
expansion of the Navier-Stokes equations in a mixed k space, r space representation 
in which k space is divided into spherical shells of the type used here. Within each 
shell centred on a wavenumber k,, we should in principle include variables representing 
2"" spatial boxes or other appropriately chosen modes. A strong averaging over these 
modes so as to  neglect within-shell fluctuations would lead to a cascade model of 
essentially the character considered here. This point of view, that our cascade model is 
a kind of mean-field theory for strong turbulence, has been discussed previously by 
Bell & Nelkin ( 1  977)  and by Siggia (1977) .  The inclusion of within-shell fluctuations 
could then allow for the build-up of intermittency. The recent calculations by Siggia 
(1977)  show one way in which this might come about. 

To get the parameter C of the mean-field theory, one can proceed phenomeno- 
logically, as in the present paper, or one can estimate coupling coefficients in the mixed 
representation, and then do the appropriate averaging. These approaches appear to be 
compatible in principle, but there seem to be important differences between the results 
obtained so far by these two methods. We find that C is definitely between 0 and 1 
and probably between 0-3 and 0.6 in three dimensions. Siggia (1977)  estimates coupling 
coefficients in a spatially local cascade model whose dynamical equations are quite 
similar to the model studied here. The parameter C in his model is negative and rather 
large. The explanation for this discrepancy probably lies in the interpretations of the 
model: our approach refers to overall spectral dynamics for the entire fluid, whereas 
Siggia's emphasizes spatially local aspects of the cascade. 

Besides providing basic insight into the turbulent solutions of the Navier-Stokes 
equations, investigations along these lines could be profitable in other ways. A better 
understanding of the relationship of the model to the basic equations should provide 
useful guidance in constructing more elaborate models designed to study phenomena 
such as corrections due to anisotropy and to intermittency. The relative ease with which 
the behaviour of such models can be probed mathematically and numerically gives 
them a decided advantage over more sophisticated approaches, which quickly 
become unmanageable when one attempts to  treat spectral effects in inhomogeneous 
anisotropic situations. 
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Appendix. Differential limit of the cascade model 
The model equations have been written for a cascade of energy from shell to shell 

in wavenumber space with the typical wavenumbers in each shell increasing by factors 
of 2 at each step. The factor of 2 is suggested by the quadratic nonlinearity in the 
Navier-Stokes equations, but may easily be varied. Desnyansky & Novikov ( 1 9 7 4 4  
have already suggested how to do this. 

The factor of 2 is replaced by an arbitrary factor h,, and the variables u,(t)  defined 
anew as 

&U2(k,,t) = 1"'"' E ( k ,  t )  dk 
h-tk,, 

with k, = hnk,. (A 2) 

The equation which follows from the conditions specified in the introduction in 
deriving (1.4) is now 

du(k,)/dt  = ak,{u2(h-'kn) - hu(k,) u(hk,) 

- hfC[u(h-'k,) ~(k,) - hu2(hk,)]} - vk; ~(k,). (A 3) 

TO study the limiting form of the equations as the shell spacing goes to zero, define 

h = es (A 4) 

(A 5) 

with the intention of taking the limit 6-t 0. The relation (A 1 )  in this limit approaches 

+u2(k, t )  = GkE(k, t ) .  

It is a simple matter to expand (A 3) in a Taylor series in 6. We find that for C < 1 
the model equations approach a first-order partial differential equation for the energy 
spectrum: 

(A 6)  
a 

= - K - k & E % ( k ,  t )  - 2vk2E(k, t )  
at ak 

with a chosen such that the limit 

K = lim 2%69( 1 - C )  01 (A 7 )  
6-0 

is finite. Equation (A 6) is identical to the Kovasznay (1948) model equation. 
If instead, guided by the choice C = 245 made for h = 2 ,  we set 

C = hi<, (A 8) 

we find a different limiting behaviour of the model equations. It is necessary to expand 
(A 3) up to second order in 6; the algebra may be somewhat simplified by using the 
operator identity exp (hxd/dx)f(x) = f(eAx). We find the limiting equation to  be the 
second-order partial differential equation 

with a now chosen such that the limit 

,8 = lim 9256%~ (A 10) 
6-0 

is finite. Equation (A 9) would be identical to Leith's (1967) diffusion approximation 
if we were to choose g = - 9, for which value (A 9) has the two stationary power-law 
solutions k-8 and k2. Leith was led to this choice for 5 by requiring that his equation 
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should have as stationary solutions the equipartition spectrum E ( k )  N k2 as well as 
the Kolmogorov k-8 spectrum. We have not fixed 5 in this manner because there 
does not seem to be any reason to  expect the cascade model to embrace a t  one time 
both equilibrium and far-from-equilibrium situations. 

It is interesting to compare the scaling behaviour seen in our model with what is 
seen for the diffusion approximation. The diffusion-approximation equation was shown 
by Leith (1 967) to permit a scaling form for the energy spectrum like (1.14). But the 
scaling function FI(~) was assumed to behave according to a power law FI(7) - r p  

for small 7. The scaling function and the power-law decay of the total energy depended 
on the choice of the exponent p .  I n  the cascade model only a single power-law decay 
occurs for a given choice of 6 (assuming that all the energy is initially located near some 
wavenumber ko),  and F1(7) approaches zero exponentially as 7+ 0. 

This suggests to us that the diffusion-approximation equation may have another 
scaling solution with a function FI(7) which vanishes identically below some non-zero 
value of 7, just as the equation requires the energy spectrum to go to zero a t  a finite 
multiple of the dissipation wavenumber K,, instead of decreasing exponentially for 
large k as it does in the cascade model. The diffusion approximation would then yield 
a unique exponent for the power-law decay of the total energy. 
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